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The main objectives of this Phase I research are to
o Further develop III-nitride microcavity photonic device technologies;
¢ Demonstrate the feasibility of achieving electrically pumped III-nitride microcavity lasers;
o Assess the feasibility of integrating miniaturized light emitter arrays with waveguides.

The objectives are to be accomplished through the work plan that can be divided into five tasks,
which are summarized in Table 1.

Table 1. Proposed Task Schedule Based on the Month After Receipt of Phase I Award

Time, Months

Tasks Optional
Phase I Duration Duration

1 (21314151617 18189

1. Optimizing p-cavity emitter materials & structures

» Blue p-cavity photonic materials & device structures Ojofgo)go(o)a

* UV p-cavity photonic materials & device structures Ojoj|o
2. Optimizing p-cavity emitter fabrication processes

» Patterning by lithography and ICP dry etching O1ag|a|lajgo

« Self-organization by selective area overgrowth [ I

3. Characterization of individual p-light emitters
«I-V, L-I, E-L characteristics vs. p-cavity lateral size;

* Polarization and directionality dependence of the lasing spectra;
* Turn-on and off speed vs. p-cavity lateral size;

* Operating lifetimes under pulsed and cw injections.

) [ —

L0

4. Coupling between p-emitter arrays with waveguides

5. Final Report

Consistent with our tasks, we have carried out the following preliminary studies:




1. Further improving blue microcavity photonics device structures.

We have investigated methods for further enhancing the emission efficiency of
InGaN/GaN LEDs. The new LED wafers were grown on sapphire substrates with 30 nm GaN
buffer layers by low pressure MOCVD. The device structure includes a 3.5 um of silicon doped
GaN, 10 periods of Si doped superlattice consisting of alternating layers of AlGaN (30 A)/GaN
(30 A), 2 0.05 pm of Si doped GaN, two periods of InGaN (30 A)/GaN (25 A) undoped quantum
well active region. Followed by 14 periods of Mg doped superlattice consisting of alternating
layers of AlGaN (30 A)/GaN (30 A), and 0.1 um Mg-doped GaN epilayer. The structure was
then thermally annealed at 950 °C for 8 seconds in nitrogen in a rapid thermal-annealing furnace
to activate Mg acceptors. By incorporating the modified superlattice structure into the device
and decreasing the top Mg-doped p-type layer thickness to 0.1 um, we have enhanced the power
output of our conventional broad area (300 x 300 um?) purple LEDs (408 nm) by a factor of 2.
Further improvements in materials and structural qualities are needed in order to fabricate
microcavity lasers based on these materials.

2. Characterization of micro-size light emitters

TiE-Nitride Blue Micro-LEDs

d=8 um

d=12 um- .

Fig. 1 (a) An AFM image showing a fabricated micro-LED. (b) Optical microscope
images of individual p-disk LEDs in action.

Dring the reporting period, individual p-disk LEDs of varying diameters from 5 to 20 um
were fabricated by photolithography patterning and inductively coupled plasma (ICP) dry
etching. Bilayers of Ni (20nm)/Au (200nm) and Al (300nm)/Ti (20nm) were deposited by
electron beam evaporation as p- and n-type Ohmic contacts. The p-type contacts and the n-type
contacts were thermally annealed in nitrogen ambient at 650 OC for 5 min. A dielectric layer was

deposited by e-beam evaporation after the p-LEDs formation for the purpose of isolating p-type




contacts from the etch-exposed n-type layer. This allowed us to carry out preliminary
measurements on the size dependence of the pu-LED characteristics. Figure 1 (a) shows an
atomic force microscope (AFM) image of a fabricated u-LED. As can be seen from Fig. 1(a),
the p-type contact was connected to the top p-layer by opening a hole through the insulating
dielectric layer. The size of the p-type contact is about 4 pm in diameter. Figure 1(b) shows
optical microscope images, taking from the top (p-type contact side), of two representative
InGaN/GaN QW p-LEDs with diameters d=8 and 12 pm in action with an injected current of 2
mA. The p-type contacts on the top layers are also visible in Fig. 1(b).

The I-V characteristics of p-disk LEDs of varying sizes and a conventional board-area
LED (300 x 300 pm?) fabricated from the same wafer are plotted in Fig. 2 (a) linear and (b)
semi-logarithmic scales. It is clearly seen that the turn-on voltages for individual p-LEDs are
larger than that of the broad-area LED. Among the pu-LEDs of different sizes, the turn-on
voltage increases with decreasing u-LED size. The slope of the Log I vs. V plot in Fig. 2(b)
reflects the ideality factor, n (=1/slope). It is clear that the ideality factor of p-LEDs (n=18.5) is
larger than that of the broad-area LED (n=6.4). There is only a weak size dependence of ideality
factor for the p-disk LEDs. The larger ideality factor reflects the enhanced non-radiative
recombination in p-LEDs, which is most likely a result of enhanced surface recombination
around the edge of the disk of u-LEDs.
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Figure 3 shows a room temperature electro-luminescence (EL) spectrum of a purple u-LED
measured at a forward current of 2 mA. Fig. 3(b) plots the output power vs. input power
measured from the sapphire substrate side for three unpackaged w-LEDs of different sizes.
Heating effects become more prominent as the size of p-LEDs decreases. For p-LEDs with
d=12 um, the output power increases almost linearly with input power in the entire measured
range. However, for p-LEDs with d=8 pm, the output power saturates at about 10 uW for input
power above about 45 mW. As expected, heat dissipation is more difficult in p-LEDs with
reduced sizes, which causes power output saturation. However, we believe that appropriate
packaging processes can improve the performance.

Transient Responses of III-nitride p-LEDs
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Fig. 4 (a) Transient responses of a microdisk LED of 12 um in diameter and a broad-arca

LED (300 x 300 mm?2) in response to picosecond electrical pulses. The turn on time of the

microdisk LEDs is on the order the system response ( < 35 ps). (b) The size dependence of

the turn-off time of the microdisk LEDs. T, decreases with a decrease of u-LED size. It
reduced from 0.21 ns for d=15 um to 0.15 ns for d=8 um.

These u-LEDs have potential applications in short distance optical communications. For
these applications, the speed is one of the most crucial parameters, which has been measured by
time-resolved EL. In Fig. 4 we plotted (a) transient responses of a u-LED and a conventional
broad-area LED and (b) the size dependence of the “turn-off” time, o, of u-LEDs. The turn-on
response was very fast and could not be measured. However, the turn-off transient was in a form
of single exponential and its lifetime, Tos, could be determined. It was found that tor decreases
with a decrease of u-LED size. It reduced from 0.21 ns for d=15 pum to 0.15 ns for d=8 um.
This behavior is also expected since the effects of surface recombination are enhanced in smaller
u-LEDs. On the other hand, the increased operating speed may also be a result of an enhanced
radiative recombination rate in p-LEDs. With this fast speed and other advantages such as long




operation lifetime, ITI-nitride p-LED arrays may be used to replace lasers as inexpensive short
distance optical links such as between computer boards with a frequency up to 10 GHz.

3. Fabricating novel u-light emitter structures and studying the coupling between y-structures

We have succeeded in fabricating double-ring p-cavity light emitters. As illustrated in
Fig. 5, their operation under current injection has been achieved. These novel light emitter
structures will be utilized to study the mechanisms of coupling between p-size light emitters.
The directionality and polarization of the emission and the optical efficiency and resonant modes
behaviors will be measured and compared for different sizes/structures. Other integrated p-
structures, such as emitter-emitter and emitter-waveguide will also be fabricated for these
studies.

HI-Nitride Double-Ring u-Cavity Light Emitters

©25 um

Fig. 5 Optical microscope images of IlI-nitride double-ring microcavity emitters under
operation. Center: Scanning electron microscopy (SEM) image of a double-ring microcavity
emitter prior to electrical contacts fabrication.




